Can Statistical Zero Knowledge Be Made Non-interactive? or On the Relationship of SZK and NISZK
نویسندگان
چکیده
We extend the study of non-interactive statistical zeroknowledge proofs. Our main focus is to compare the class NISZK of problems possessing such non-interactive proofs to the class SZK of problems possessing interactive statistical zero-knowledge proofs. Along these lines, we first show that if statistical zero knowledge is non-trivial then so is non-interactive statistical zero knowledge, where by non-trivial we mean that the class includes problems which are not solvable in probabilistic polynomial-time. (The hypothesis holds under various assumptions, such as the intractability of the Discrete Logarithm Problem.) Furthermore, we show that if NISZK is closed under complement, then in fact SZK = NISZK, i.e. all statistical zero-knowledge proofs can be made non-interactive. The main tools in our analysis are two promise problems that are natural restrictions of promise problems known to be complete for SZK. We show that these restricted problems are in fact complete for NISZK and use this relationship to derive our results comparing the two classes. The two problems refer to the statistical difference, and difference in entropy, respectively, of a given distribution from the uniform one. We also consider a weak form of NISZK, in which only requires that for every inverse polynomial 1/p(n), there exists a simulator which achieves simulator deviation 1/p(n), and show that this weak form of NISZK actually equals NISZK.
منابع مشابه
On the impossibility of entropy reversal, and its application to zero-knowledge proofs
Zero knowledge proof systems have been widely studied in cryptography. In the statistical setting, two classes of proof systems studied are Statistical Zero Knowledge (SZK) and Non-Interactive Statistical Zero Knowledge (NISZK), where the difference is that in NISZK only very limited communication is allowed between the verifier and the prover. It is an open problem whether these two classes ar...
متن کاملOn SZK and PP
In both query and communication complexity, we give separations between the class NISZK, containing those problems with non-interactive statistical zero knowledge proof systems, and the class UPP, containing those problems with randomized algorithms with unbounded error. These results significantly improve on earlier query separations of Vereschagin [Ver95] and Aaronson [Aar12] and earlier comm...
متن کاملOn the Relationship Between Statistical Zero-Knowledge and Statistical Randomized Encodings
Statistical Zero-knowledge proofs (Goldwasser, Micali and Rackoff, SICOMP 1989) allow a computationally unbounded server to convince a computationally limited client that an input x is in a language Π without revealing any additional information about x that the client cannot compute by herself. Randomized encoding (RE) of functions (Ishai and Kushilevitz, FOCS 2000) allows a computationally li...
متن کاملUnconditional Characterizations of Non-interactive Zero-Knowledge
Non-interactive zero-knowledge (NIZK) proofs have been investigated in two models: the Public Parameter model and the Secret Parameter model. In the former, a public string is “ideally” chosen according to some efficiently samplable distribution and made available to both the Prover and Verifier. In the latter, the parties instead obtain correlated (possibly different) private strings. To add f...
متن کاملNoninteractive Statistical Zero-Knowledge Proofs for Lattice Problems
We construct noninteractive statistical zero-knowledge (NISZK) proof systems for a variety of standard approximation problems on lattices, such as the shortest independent vectors problem and the complement of the shortest vector problem. Prior proof systems for lattice problems were either interactive or leaked knowledge (or both). Our systems are the first known NISZK proofs for any cryptogra...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 1999